муниципальное общеобразовательное учреждение «Нифантовская школа»

Рассмотрено
на методическом совете
(протокол от 25.08.2023 №4)
Принято:
Решением педсовета
(протокол от 28.08.2023 №1)
Принято:
Решением педсовета
(протокол от 28.08.2023 №1)
Принято:
Директор МОУ
«Нифантовская школа»
(приказ от 28.08.2023 №135)

Рабочая программа по учебному предмету «Химия»

9 класс

Учитель: Устинова Галина Владимировна, высшая квалификационная категория

Содержание

1.Планируемые результаты освоения учебного предмета	3 c.
2.Содержание учебного предмета	8 c.
3. Тематическое планирование, в том числе с учётом рабочей програм	МЫ
воспитания с указанием количества часов, отводимых на освоение ках	кдой
темы	14 c.

Рабочая программа по химии для 8 - 9 классов составлена на основании:

- 1. Программы основного общего образования по химии. 8-9 классы в соответствии с ФГОС ООО (второго поколения), авторы Н.Е. Кузнецова, Н.Н. Гара.- Москва: «Вентана- Граф», 2016 год
- 2. Положения о структуре, порядке разработки и утверждения рабочих программ по отдельным учебным предметам, дисциплинам, курсам МОУ «Нифантовская школа»

1.Планируемые результаты освоения учебного предмета.

Личностные:

- Формирование чувства гордости за российскую химическую науку.
- Воспитание ответственного отношения к природе, осознание необходимости защита окружающей среды, стремление к здоровому образу жизни.
- Понимание особенностей жизни и труда в условиях информатизации общества.
- Формирование творческого отношения к проблемам.
- Подготовка к осознанному выбору индивидуальной образовательной или профессиональной траектории.
- Умение управлять своей познавательной деятельностью.
- Умение оценивать ситуацию и оперативно принимать решения, находить адекватные способы поведения и взаимодействия с партнерами во время учебной и игровой деятельности.
- Формирование познавательной и информационной культуры, в том числе развитие навыков самостоятельной работы с учебными пособиями, книгами, доступными современными информационными технологиями.
- Развитие готовности к решению творческих задач, способности оценивать проблемные ситуации и оперативно принимать ответственные решения в различных продуктивных видах деятельности (учебная, поисково-исследовательская, клубная, проектная, кружковая и др.).
- Формирование химико-экологической культуры, являющейся составной частью экологической и общей культуры и научного мировоззрения.

Метапредметные:

- Овладение навыками самостоятельного приобретения новых знаний организации учебной деятельности, поиска средств ее осуществления.
- Умение планировать, контролировать и оценивать учебные действия в соответствии с поставленной задачей и условиями ее реализации.
- Понимание проблемы, умение ставить вопросы, выдвигать гипотезу, давать определения понятиям, классифицировать, структурировать материал, проводить эксперименты, аргументировать свою собственную позицию, формулировать выводы и заключения.

- Умение извлекать информацию из различных источников, включая средства массовой информации, компакт-диски учебного назначения, ресурсы Всемирной сети Интернет, умение свободно пользоваться словарями различных типов, справочной литературой, в том числе на электронных носителях; соблюдать нормы информационной избирательности, этики.
- Умение на практике пользоваться основными логическими приемами, методами наблюдения, моделирования, объяснения, решения проблем, прогнозирования и др.
- Умение воспринимать, систематизировать и предъявлять информацию в словесной, образной, символической формах ;анализировать и перерабатывать полученную информацию в соответствии с поставленными задачами;
- Умение переводить информацию из одной знаковой системы в другую (из текста в таблицу, из аудиовизуального ряда в текст и др.), выбирать знаковые системы адекватно познавательной и коммуникативной ситуации.
- Умение свободно, правильно излагать свои мысли в устной и письменной форме; адекватно выражать свое отношение к фактам и явлениям окружающей действительности, к прочитанному, услышанному, увиденному.
- Умение объяснять явления и процессы социальной действительности с научных, социально-философских позиций, рассматривать их комплексно в контексте сложившихся реалий и возможных перспектив.
- Способность организовать свою жизнь в соответствии с общественно значимыми представлениями о здоровом образе жизни, правах и обязанностях гражданина, ценностях бытия и культуры, принципах социального взаимодействия.
- Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные способы решения задач.
- Выполнение познавательных и практических заданий, в том числе с использованием проектной деятельности, на уроках и в доступной социальной практике.
- Способность оценивать с позиций социальных норм собственные поступки и поступки других людей; умение слушать собеседника, понимать его точку зрения, признавать право другого человека на иное мнение.
- Умение взаимодействовать с людьми, работать в коллективах с выполнением различных социальных ролей.
- Умение оценивать свою познавательно-трудовую деятельность с точки зрения нравственных, правовых норм, эстетических ценностей по принятым в обществе и коллективе требованиям и принципам.
- Овладение сведениями о сущности и особенностях объектов, процессов и явлений действительности (природных, социальных, культурных, технических и др.) в соответствии с содержанием конкретного учебного предмета.
- Понимание значимости различных видов профессиональной и общественной деятельности.

Предметные:

Выпускник научится:

- характеризовать основные методы познания: наблюдение, измерение, эксперимент;
- описывать свойства твердых, жидких, газообразных веществ, выделяя их существенные признаки;
- раскрывать смысл основных химических понятий «атом», «молекула», «химический элемент», «простое вещество», «сложное вещество», «валентность», «химическая реакция», используя знаковую систему химии;
- раскрывать смысл законов сохранения массы веществ, постоянства состава, атомно-молекулярной теории;
- различать химические и физические явления;
- называть химические элементы;
- определять состав веществ по их формулам;
- определять валентность атома элемента в соединениях;
- определять тип химических реакций;
- называть признаки и условия протекания химических реакций;
- выявлять признаки, свидетельствующие о протекании химической реакции при выполнении химического опыта;
- составлять формулы бинарных соединений;
- составлять уравнения химических реакций;
- соблюдать правила безопасной работы при проведении опытов;
- пользоваться лабораторным оборудованием и посудой;
- вычислять относительную молекулярную и молярную массы веществ;
- вычислять массовую долю химического элемента по формуле соединения;
- вычислять количество, объем или массу вещества по количеству объему, массе реагентов или продуктов реакции;
- характеризовать физические и химические свойства простых веществ: кислорода и водорода;
- получать, собирать кислород и водород;
- распознавать опытным путем газообразные вещества: кислород, водород;
- раскрывать смысл закона Авогадро;
- раскрывать смысл понятий «тепловой эффект реакции», «молярный объем»;
- характеризовать физические и химические свойства воды;
- раскрывать смысл понятия «раствор»;
- вычислять массовую долю растворенного вещества в растворе;
- приготовлять растворы с определенной массовой долей растворенного вещества;
- называть соединения изученных классов неорганических веществ;
- характеризовать физические и химические свойства основных классов неорганических веществ: оксидов, кислот, оснований, солей;
- определять принадлежность веществ к определенному классу

соединений;

- составлять формулы неорганических соединений изученных классов;
- проводить опыты, подтверждающие химические свойства изученных классов неорганических веществ;
- распознавать опытным путем растворы кислот и щелочей по изменению окраски индикатора;
- характеризовать взаимосвязь между классами неорганических соединений;
- раскрывать смысл Периодического закона Д.И. Менделеева;
- объяснять физический смысл атомного (порядкового) номера химического элемента, номеров группы и периода в периодической системе Д.И.Менделеева;
- объяснять закономерности изменения строения атомов, свойств элементов в пределах малых периодов и главных подгрупп;
- характеризовать химические элементы (от водорода до кальция) на основе их положения в периодической системе Д.И. Менделеева и особенностей строения их атомов;
- составлять схемы строения атомов первых 20 элементов периодической системы Д.И. Менделеева;
- раскрывать смысл понятий: «химическая связь», «электроотрицательность»;
- характеризовать зависимость физических свойств веществ от типа кристаллической решетки;
- определять вид химической связи в неорганических соединениях;
- изображать схемы строения молекул веществ, образованных разными видами химических связей;
- раскрывать смысл понятий «ион», «катион», «анион», «электролиты», «неэлектролиты», «электролитическая диссоциация», «окислитель», «степень окисления» «восстановитель», «окисление», «восстановление»;
- определять степень окисления атома элемента в соединении;
- раскрывать смысл теории электролитической диссоциации;
- составлять уравнения электролитической диссоциации кислот, щелочей, солей;
- объяснять сущность процесса электролитической диссоциации и реакций ионного обмена;
- составлять полные и сокращенные ионные уравнения реакции обмена;
- определять возможность протекания реакций ионного обмена;
- проводить реакции, подтверждающие качественный состав различных веществ;
- определять окислитель и восстановитель;
- составлять уравнения окислительно-восстановительных реакций;
- называть факторы, влияющие на скорость химической реакции;

- классифицировать химические реакции по различным признакам;
- характеризовать взаимосвязь между составом, строением и свойствами неметаллов;
- проводить опыты по получению, собиранию и изучению химических свойств газообразных веществ: углекислого газа, аммиака;
- распознавать опытным путем газообразные вещества: углекислый газ и аммиак;
- характеризовать взаимосвязь между составом, строением и свойствами металлов;
- называть органические вещества по их формуле: метан, этан, этилен, метанол, этанол, глицерин, уксусная кислота, аминоуксусная кислота, стеариновая кислота, олеиновая кислота, глюкоза;
- оценивать влияние химического загрязнения окружающей среды на организм человека;
- грамотно обращаться с веществами в повседневной жизни, определять возможность протекания реакций некоторых представителей органических веществ с кислородом, водородом, металлами, основаниями, галогенами.

Выпускник получит возможность научиться:

- выдвигать и проверять экспериментально гипотезы о химических свойствах веществ на основе их состава и строения, их способности вступать в химические реакции, о характере и продуктах различных химических реакций;
- характеризовать вещества по составу, строению и свойствам, устанавливать причинно-следственные связи между данными характеристиками вещества;
- составлять молекулярные и полные ионные уравнения по сокращенным ионным уравнениям;
- прогнозировать способность вещества проявлять окислительные или восстановительные свойства с учетом степеней окисления элементов, входящих в его состав;
- составлять уравнения реакций, соответствующих последовательности превращений неорганических веществ различных классов;
- выдвигать и проверять экспериментально гипотезы о результатах воздействия различных факторов на изменение скорости химической реакции;
- использовать приобретенные знания для экологически грамотного поведения в окружающей среде;
- использовать приобретенные ключевые компетенции при выполнении проектов и учебно-исследовательских задач по изучению свойств, способов получения и распознавания веществ;
- объективно оценивать информацию о веществах и химических процессах;
- критически относиться к псевдонаучной информации, недобросовестной рекламе в средствах массовой информации;
- осознавать значение теоретических знаний по химии для практической деятельности человека;

• создавать модели и схемы для решения учебных и познавательных задач; понимать необходимость соблюдения предписаний, предлагаемых в инструкциях по использованию лекарств, средств бытовой химии и др.

2. Содержание учебного предмета.

В системе естественнонаучного образования химия как учебный предмет занимает важное место в познании законов природы, формировании научной картины мира, создании основы химических знаний, необходимых для повседневной жизни, навыков здорового и безопасного для человека и окружающей его среды образа жизни, а также в воспитании экологической культуры.

Успешность изучения химии связана с овладением химическим языком, соблюдением правил безопасной работы при выполнении химического эксперимента, осознанием многочисленных связей химии с другими предметами школьного курса.

Программа включает в себя основы неорганической и органической химии. Главной идеей программы является создание базового комплекса опорных знаний по химии, выраженных в форме, соответствующей возрасту обучающихся.

В содержании данного курса представлены основополагающие химические теоретические знания, включающие изучение состава и строения веществ, зависимости их свойств от строения, прогнозирование свойств веществ, исследование закономерностей химических превращений и путей управления ими в целях получения веществ и материалов.

Теоретическую основу изучения неорганической химии составляет атомно-молекулярное учение, Периодический закон Д.И. Менделеева с краткими сведениями о строении атома, видах химической связи, закономерностях протекания химических реакций.

В изучении курса значительная роль отводится химическому эксперименту: проведению практических и лабораторных работ, описанию результатов ученического эксперимента, соблюдению норм и правил безопасной работы в химической лаборатории.

Реализация данной программы в процессе обучения позволит обучающимся усвоить ключевые химические компетенции и понять роль и значение химии среди других наук о природе.

Изучение предмета «Химия» в части формирования у обучающихся научного мировоззрения, освоения общенаучных методов (наблюдение, измерение, эксперимент, моделирование), освоения практического применения научных знаний основано на межпредметных связях с предметами: «Биология», «География», «История», «Литература», «Математика», «Основы безопасности жизнедеятельности», «Русский язык», «Физика», «Экология».

9 класс

Химические реакции.

Понятие о скорости химической реакции. Энергетика химических

реакций. Факторы, влияющие на скорость химической реакции. Понятие о катализаторе. Классификация химических реакций по различным признакам: числу и составу исходных и полученных веществ; изменению степеней окисления атомов химических элементов; поглощению или выделению энергии.

Растворы. Теория электролитической диссоциации.

растворах: определение растворов, растворители, растворимость, классификация растворов. Предпосылки возникновения теории электролитической диссоциации. Идеи С. Аррениуса, Д.И. Менделеева, ученых. Каблукова других Электролитическая Электролиты и неэлектролиты. Дипольное строение молекулы Диссоциация электролитов с ионной и полярной ковалентной химической связью. Ионы. Свойства ионов. Катионы и анионы. Кристаллогидраты. Реакции ионного обмена. Условия протекания реакций ионного обмена. Электролитическая диссоциация кислот, щелочей и солей. Сильные электролиты. Химические свойства кислот как электролитов. Химические свойства оснований как электролитов. Химические свойства солей как электролитов. Гидролиз солей.

Неметаллы IV-VI групп и их соединения.

Распространение неметаллических элементов В природе. Положение элементов- неметаллов в периодической системе. Неметаллические р-элементы. Особенности строения их атомов: общие черты и различия, способы получения. Относительная электроотрицательность. Типичные формы водородных и кислородных соединений неметаллов. Общая характеристика неметаллов подгруппы кислорода. Кислород и озон. Сера: физические и химические свойства. Соединения серы: сероводород, сульфиды, оксиды серы. Серная, сернистая и сероводородная кислоты и их соли. Общая характеристика элементов подгруппы азота. Азот: физические и химические свойства. Аммиак. Соли аммония. Оксиды азота. Азотная кислота и ее соли. Фосфор: физические и химические свойства. Соединения фосфора: оксид фосфора (V), ортофосфорная кислота и ее соли. Общая характеристика элементов Углерод: физические и химические углерода. Аллотропия углерода: алмаз, графит, карбин, фуллерены. Соединения углерода: оксиды углерода (II) и (IV), угольная кислота и ее соли. Кремний и его соединения. Силикатная промышленность.

Металлы и их соединения.

Положение металлов в периодической системе химических элементов Д.И. Менделеева. Металлы в природе и общие способы их получения. Особенности строения их атомов. Общие физические свойства металлов. Общие химические свойства металлов: реакции с неметаллами, кислотами, солями. Электрохимические процессы. Электрохимический ряд напряжений металлов. Сплавы. Понятие коррозии металлов. Металлы А-группы периодической системы и образуемые ими простые вещества. Щелочные

металлы и их соединения. Щелочноземельные металлы и их соединения. Жесткость воды. Алюминий. Амфотерность оксида и гидроксида алюминия. Железо. Соединения железа и их свойства: оксиды, гидроксиды и соли железа (II и III).

Первоначальные сведения об органических веществах.

развитие органической Возникновение И химии-химии соединений углерода. Первоначальные сведения о строении органических веществ. Классификация и номенклатура углеводородов. Углеводороды: метан, этан, этилен. Источники углеводородов: природный газ, нефть, уголь. Кислородсодержащие соединения: спирты (метанол, этанол, глицерин), карбоновые кислоты (уксусная кислота, аминоуксусная кислота, стеариновая и олеиновая кислоты). Биологически важные вещества: жиры, глюкоза, белки. Химическое загрязнение окружающей среды и его последствия.

Химия и жизнь.

Химическое загрязнение окружающей среды и его последствия. Химия и здоровье. Вещества, вредные для здоровья человека. Полимеры. Минеральные удобрения на вашем участке. Понятия о химической технологии. Понятия о химико- технологическом процессе. Производство неорганических веществ и окружающая среда. Понятия о системном подходе к организации химического производства. Понятие о металлургии. Производство чугуна. Различные способы производства стали.

Типы расчетных задач:

9 класс

- Расчеты по термохимическим уравнениям.
- Вычисление скорости химической реакции по кинетическому уравнению.
- Расчеты по химическим уравнениям, если одно из реагирующих веществ дано в избытке.
- Вычисление массы или объема продукта реакции по известной массе или объему исходного вещества, содержащего примеси.

Примерные темы практических работ:

9 класс

- Влияние различных факторов на скорость химической реакции.
- Решение экспериментальных задач по теме «Растворы. Теория электролитической диссоциации»
- Реакции ионного обмена.
- Качественные реакции на ионы в растворе.
- Получение аммиака и изучение его свойств.
- Получение углекислого газа и изучение его свойств.
- Решение экспериментальных задач по теме «Неметаллы IV VII групп и их соединений».
- Решение экспериментальных задач по теме «Металлы и их соединения».

• Минеральные удобрения.

3. Тематическое планирование, в том числе с учётом рабочей программы воспитания с указанием количества часов, отводимых на освоение каждой темы.

	9 класс 6				
1					
	вопросов курса 8 класса.		2		
2	Химические реакции.	Управление процессом протекания	3		
	Практическая работа№1.	химической реакции – как основа			
	Влияние различных	химической технологии и химического			
	факторов на скорость	производства.			
	химической реакции.				
3	Растворы. Теория	Вклад в развитие химии выдающихся	11		
	электролитической	русских ученых-химиков: И.А.			
	диссоциации. Практическая	Каблукова, В.А. Кистяковского о			
	работа №2. «Решение	гидратации ионов; Д.И. Менделеева о			
	экспериментальных задач	гидратной теории растворов; В.А.			
	по теме электролитическая	Чернова, А.Д. Зеленского, М.С. Цвета о			
	диссоциация».	теории ионного обмена. Применение			
		электролитов в промышленности,			
		сельском хозяйстве, медицине, быту.			
		Механизм закисления почв, воды.			
		Понятие о буферных системах и их			
		роли в самоочищении водоемов.			
4	Общая характеристика	Понятие о биогенных элементах, их	2		
	неметаллов.	положение в периодической системе.			
		Распространенность химических			
		элементов в природе, содержание в			
		живых организмах, степень проявления			
		токсичности.			
5	Подгруппа кислорода и ее	Озон - сильнейший окислитель. Сера	7		
	типичные представители.	как элемент, входящий в состав веществ			
	Практическая работа №3.	- загрязнителей природной среды.			
	«Свойства серной кислоты.	Сероводород и оксиды серы как			
	Распознавание сульфатов».	загрязнители природной среды.			
		Последствия образования			
		сернокислотных дождей (влияние на			
		водоемы, хвойные породы деревьев).			
		Промышленные способы			
		обезвреживания оксидов серы и			
		сероводорода. Демонстрационный опыт			
		«Моделирование сернокислотных			
		дождей». Исследование «Влияние			
		диоксида серы на рост и развитие			
		растений».			

	T 	Ъ	
6	Подгруппа азота и ее	Вклад в развитие химии выдающихся	6
	типичные представители.	русских ученых-химиков: М.Е.	
	Практическая работа №4.	Вольпина, В.Б. Шура, А.Е. Шилова о	
	«Получение аммиака и	биологической фиксации азота; А.А.	
	исследование его свойств».	Мусина – Пушкина о получении	
		аллотропной видоизменений фосфора –	
		фосфора фиолетового. Применение	
		жидкого азота для утилизации,	
		вышедшей из употребления продукции.	
		Аммиак как загрязнитель окружающей	
		среды. Положительное и отрицательное	
		воздействие аммиака и его соединений	
		на живые организмы. Производство	
		аммиака как пример экологически	
		чистой технологии. Проблемы	
		накопления оксидов азота в атмосфере,	
		их участие в фотохимическом смоге,	
		образовании кислотных дождей.	
		Химические методы очистки	
		газообразных выбросов, содержащих	
		оксиды азота. Обезвреживание оксидов	
		азота методом адсорбции с	
		использованием растворов аммиака и	
		карбоната аммония. Демонстрационный	
		опыт «Обнаружение нитратов в овощах	
		фруктах, продуктах питания».	
7	Подгруппа углерода и ее	Достопримечательности России:	7
	типичные представители.	алмазный фонд. Вклад в развитие	
	Практическая работа №5.	химии выдающихся русских ученых-	
	«Получение оксида углерода	химиков: Б.В. Дерягина, Б.В. Спицына о	
	(IV) и изучение его свойств.	получении впервые в мире алмазов при	
	Распознавание карбонатов».	низких давлениях; М.В. Ломоносов –	
		основоположник научного подхода к	
		производству стеклянных изделий в	
		России. Народные промыслы России:	
		Каменное зодчество. Керамика (гжель,	
		дымковская игрушка). Адсорбция как	
		один из методов улавливания	
		отравляющих веществ. Оксиды	
		углерода - загрязнители атмосферы.	
		Влияние углекислого газа на жизнедеятельность организмов;	
		снижение фотосинтеза у растений и	
		ухудшение дыхания у животных,	
		человека. Отравляющее действие	
		угарного газа. Парниковый эффект:	
		1 * -	
		причины возникновения, возможные	
		1 * -	

		свойственными живой природе.	
	органических соединениях.	среды органическими веществами, не	
		Некоторые пути ее решения.	
		Двойственная роль метана в биосфере:	
		источник углерода для	
		метанокисляющих бактерий и	
		загрязнитель-разрушитель озонового	
		слоя Земли. Полиэтилен и	
		полипропилен как примеры стойких	
		загрязнителей природной среды.	
		Влияние ядохимикатов на	
		наследственность человека.	
		Биологические способы борьбы с	
		вредителями сельскохозяйственных	
		культур и сорняками. Загрязнение	
		биосферы продуктами сгорания	
		природного газа, нефти,	
		нефтепродуктов, угля. Парниковый	
		эффект: пути решения проблемы. Демонстрационный опыт: «Действие	
		нефти на растения». Токсичность	
		спиртов. Этанол - социальный токсин.	
		Метанол - топливо будущего. Причины	
		попадания фенолов в природную среду,	
		их отрицательное действие на живые	
		организмы. СМС как загрязнители	
		природной среды. Способы	
		нейтрализации СМС. Удаления их с	
		поверхности воды.	
9	Общие свойства металлов.	Двойственная роль ионов металлов в	4
		природе в зависимости от их	
		концентрации. Коррозия - фактор	
		загрязнения окружающей среды.	
		Влияние продуктов коррозии на	
		обитателей водоемов.	
		Демонстрационные опыты: «Действие	
		ионов тяжелых металлов на развитие	
		растений», «Действие продуктов коррозии металлов на развитие водных	
		коррозии металлов на развитие водных растений».	
		pacicinni.	
10	Метаппы главных и побочных	-	9
10	Металлы главных и побочных полгрупп. Практическая	Вклад в развитие химии выдающихся	9
10	Металлы главных и побочных подгрупп. Практическая работа №6. «Решение	-	9

	3.6	V	
	по теме «Металлы».	магний - макроэлементы, входящие в	
		состав животных и растительных	
		организмов. Загрязнение среды	
		обитания замена кальция на стронций в	
		организмах человека и животных.	
		Влияние алюминия на нервную систему	
		человека. Отрицательное действие	
		алюминии на дыхательную систему	
		рыб. Общетоксическое действие солей	
		двухвалентного железа на организм	
		человека. Народные промыслы России:	
		художественная обработка металла	
		(финифть, филигрань, северная чернь);	
		декоративная роспись на металле и	
		лаковая живопись (жостовские	
		подносы, палежская лаковая живопись).	
11	Человек в мире веществ.	Неорганические вещества в быту,	4
	Практическая работа №7.	промышленности, медицине. Вклад в	
	«Минеральные удобрения».	развитие химии выдающихся русских	
		ученых-химиков: Д.Н. Прянишников –	
		основоположник химизации	
		отечественного сельского хозяйства.	
		Демонстрационный опыт «Роль	
		биогенных элементов в жизни	
		растений»: 1) замена в питательной	
		среде магния - важнейшего элемента	
		пигмента хлорофилла - на кальций	
		(имитация процесса биологической	
		взаимозаменяемости элементов);	
		2) участие углекислого газа в процессе	
		фотосинтеза растений (биогенный	
		элемент углерод) и угнетающее	
		действие соединений свинца - ядов».	
12	Производство неорганических	Экологические требования к качеству	2
1-	веществ и их применение.	производимой продукции. Техногенные	_
	вещеетв и ин применение.	источники веществ - загрязнителей	
		биосферы. Основные природоохранные	
		мероприятия, предусмотренные в	
		доменном производстве. Внедрение на	
		металлургических предприятиях	
		прогрессивного метода получения стали	
		прямым восстановлением железа из	
		руды - путь к сохранению природной	
		руды - путь к сохранению природной среды. Понятие о безотходном	
		-	
12	Обобщание и наржежиме	Производстве.	2
13	Обобщение и повторение.	Важнейшие природоохранные меры.	3

При изучении химии происходит формирование знаний основ химической науки как области современного естествознания, практической деятельности человека и как одного из компонентов мировой культуры. Задача учебного предмета состоит в формировании системы химических знаний — важнейших фактов, понятий, законов и теоретических положений, доступных обобщений мировоззренческого характера, языка науки, в приобщении к научным методам познания при изучении веществ и химических реакций, в формировании и развитии познавательных умений и их применении в учебно-познавательной и учебно-исследовательской деятельности, освоении правил безопасного обращения с веществами в повседневной жизни.

При изучении химии на уровне основного общего образования важное значение приобрели такие цели, как:

- формирование интеллектуально развитой личности, готовой к самообразованию, сотрудничеству, самостоятельному принятию решений, способной адаптироваться к быстро меняющимся условиям жизни;
- направленность обучения на систематическое приобщение обучающихся к самостоятельной познавательной деятельности, научным методам познания, формирующим мотивацию и развитие способностей к химии;
- обеспечение условий, способствующих приобретению обучающимися опыта разнообразной деятельности, познания и самопознания, ключевых навыков (ключевых компетенций), имеющих универсальное значение для различных видов деятельности;
- формирование общей функциональной и естественно-научной грамотности, в том числе умений объяснять и оценивать явления окружающего мира, используя знания и опыт, полученные при изучении химии, применять их при решении проблем в повседневной жизни и трудовой деятельности;
- формирование у обучающихся гуманистических отношений, понимания ценности химических знаний для выработки экологически целесообразного поведения в быту и трудовой деятельности в целях сохранения своего здоровья и окружающей природной среды;
- развитие мотивации к обучению, способностей к самоконтролю и самовоспитанию на основе усвоения общечеловеческих ценностей, готовности к осознанному выбору профиля и направленности дальнейшего обучения.

Оценочные материалы по химии 9 КЛАСС

Время выполнения – 45 минут

1. I	Песть электронов во в	нешнем электронно	м слое находятся у а	тома:
	1) хлора	2) кислорода	3) азота	4) алюминия
2. K	Совалентная полярная	связь образуется ме	жду атомами:	
	1) лития и кислорода	2) серы и натрия	3) хлора и водорода	4) магния и фтора
3. T	Гакую же степень окис.	ления, как и в SO ₂ , с	ера имеет в соедине	нии:
	1) K_2SO_4	2) H_2SO_3	3) $(NH_4)_2S$	4) SO ₃
4. k	Сакую формулу имеет с	сульфат-ион:		
	1) S^0	2) SO ₃ ² -	3) SO ₄ ² -	4) S ²⁻

5. Какое уравнение соответствует реакции соединения:

1) $K_2CO_3 + 2HCl = 2KCl + CO_2 + H_2O$

2) $Fe_2O_3 + 3H_2 = 2Fe + 3H_2O$

3) $CaCO_3 + CO_2 + H_2O = Ca(HCO_3)_2$

4) $4HNO_3 = 4NO_2 + O_2 + 2H_2O$

6. Выделение газа происходит в результате взаимодействия ионов:

1) H⁺и NO₃⁻

2) H⁺ и CO₃²⁻

3) NH₄⁺ и SO₄²⁻

4) NH₄⁺ и Cl⁻

7. В реакцию с разбавленной серной кислотой вступает:

1) медь

2) золото

3) цинк

4) кислород

8. Электронная конфигурация 3s²3p⁵ внешнего уровня соответствует атому:

1) хлора

2) марганца

3) брома

4) хрома

9. Верны ли следующие суждения о чистых веществах и смесях?

А. Минеральная вода является чистым веществом.

Б. Духи являются смесью веществ.

1)верно только А

2)верно только Б

3)верны оба суждения

4)оба суждения неверны

10. Металлические свойства у магния выражены сильнее, чем у

1) бериллия

2) калия

3) кальция

4) натрия

11. В порядке увеличения числа электронов во внешнем уровне расположены химические элементы следующих рядов:

1) Br - Cl - F

2) C - Si - Ge

3) Al - Si - P

4) C - N - O

5) Te - Se - S

12. Алюминий может взаимодействовать с растворами

1) сульфата калия

2)гидроксида кальция

3)нитрата аммония

4) хлорида бария

5) серной кислоты

13. Выберите схемы превращений, в которых углерод является восстановителем

1) $C^{+4} \rightarrow C^{+2}$

2) $C^{+2} \rightarrow C^{+4}$

3) $C^0 \rightarrow C^{-2}$

4) $C^{-2} \to C^{-4}$

5) $C^{-4} \rightarrow C^0$

14. Решите задачу.

3,5 г лития растворили в избытке воды. Вычислите объём газа (л), выделившегося в результате реакции при н.у. и массу прореагировавшей воды.

15. Напишите молекулярные уравнения реакций, с помощью которых можно осуществить следующие превращения.

Сера \rightarrow сероводород \rightarrow оксид серы (IV) \rightarrow оксид серы (VI) \rightarrow серная кислота \rightarrow сульфат меди (II) \rightarrow сульфат бария

Ответы:

OIDCID	••									
No	1	2	3	4	5	6	7	8	9	10
ответ	2	3	2	3	3	2	3	1	2	1

11	34
12	25
13	25

14.
$$2Li + 2H_2O = 2LiOH + H_2$$

$$n(Li) = 3.5 \Gamma / 7 \Gamma / MOЛЬ = 0.5 МОЛЬ$$

$$n(Li) = \frac{1}{2} * n(H_2) = 0.25$$
 моль

 $V(H_2) = 0.25$ моль * 22,4 л/моль = 11,2 л

$$n(Li) = n(H_2O) = 0.5$$
 моль

$$m(H_2O) = 0.5$$
 моль * 18 г/моль = 9 г

15.
$$S \rightarrow H_2S \rightarrow SO_2 \rightarrow SO_3 \rightarrow H_2SO_4 \rightarrow CuSO_4 \rightarrow BaSO_4$$

1)
$$S + H_2 = H_2 S$$

- 2) $2H_2S + 3O_2 = 2SO_2 + 2H_2O$
- 3) $2SO_2 + O_2 = 2SO_3$
- 4) $SO_3 + H_2O = H_2SO_4$
- 5) $H_2SO_4 + Cu(OH)_2 = CuSO_4 + 2H_2O$ (возможны другие варианты реакции)
- 6) $CuSO_4 + BaCl_2 = BaSO_4 + CuCl_2$

Критерии оценивания:

Задания 1-10 по 1 баллу за каждый правильный ответ (максимум 10б.)

3адания 11-13 по 2 балла, если ошибок нет. Если допущена 1 ошибка — 1 балл (максимум 6б.)

Задача 14 по 1 баллу за каждый правильный элемент решения (максимум 4 б.)

Задание 15 по 1 баллу за каждую правильно составленную реакцию (максимум 5б.) Всего: 25 баллов

Шкала перевода баллов в отметку:

Отметка	Баллы
5	24,0-26,0
4	19,0-23,0
3	13,0-18,0
2	0 - 12,0